Applied Optimal Control: Optimization, Estimation and ControlThis best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it “a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included.” |
Шта други кажу - Напишите рецензију
Нисмо пронашли ниједну рецензију на уобичајеним местима.
Садржај
Parameter optimization problems | 1 |
Optimization problems for dynamic systems | 42 |
Optimization problems for dynamic systems | 90 |
Optimal feedback control | 128 |
unspecified | 201 |
Numerical solution of optimal programming | 212 |
Singular solutions of optimization | 246 |
Differential games | 271 |
Introduction to random processes | 315 |
Optimal filtering and prediction | 348 |
Optimal smoothing and interpolation | 390 |
Optimal feedback control in the presence | 408 |
Appendix A Some basic mathematical facts | 438 |
462 | |
477 | |
Some concepts of probability | 296 |
Друга издања - Прикажи све
Applied Optimal Control: Optimization, Estimation and Control A. E. Bryson Приказ није доступан - 2017 |
Чести термини и фразе
algorithm angle assume boundary conditions calculus of variations Chapter components computation Consider contours of constant control variable correlation covariance matrix defined density function derived determine differential equations dynamic programming dynamic system estimate Euler-Lagrange equations Example feedback control feedback law filter first-order follows gauss-markov process gaussian given Hamiltonian inequality constraints influence functions initial conditions integral linear system markov markov process markov property maximum measurement minimize minimum minimum-time path multistage necessary conditions nonlinear Note numerical obtained optimal control optimal path optimization problems optimum parameter performance index perturbation possible purely random sequence quadratic random process random variable random vector Riccati equation saddle point satisfy scalar second-order Section Show shown in Figure singular arc solution solve specified stationary STEP Substituting system equations terminal conditions terminal constraints theorem tion trajectory transition matrix two-point boundary-value problem variations velocity white noise zero
Популарни одломци
Страница 461 - Kalman, A new approach to linear filtering and prediction problems, Trans.
Страница 461 - H. Raiffa and R. Schlaifer, Applied statistical decision theory, Cambridge, Mass., Harvard University Press, 1961.