Plasma-Material Interaction in Controlled Fusion

Предња корица
Springer Science & Business Media, 25.08.2006. - 268 страница

Plasma-Material Interaction in Controlled Fusion deals with the specific contact between the fourth state of matter, i.e. plasma, and the first state of matter, i.e. a solid wall, in controlled fusion experiments. A comprehensive analysis of the main processes of plasma-surface interaction is given together with an assessment of the most critical questions within the context of general criteria and operation limits. It is shown that the choice of plasma-facing materials can be reduced to a very limited list of possible candidates. Plasma-Material Interaction in Controlled Fusion emphasizes that a reliable solution of the material problem can only be found by adjusting the materials to suitable plasma scenarios and vice versa.

 

Шта други кажу - Напишите рецензију

Нисмо пронашли ниједну рецензију на уобичајеним местима.

Садржај

Introduction
3
Fusion as Energy Source
5
Energy Problem and Related Safety Aspects
6
Fusion Fuel
9
32 Ignition and Burn Criteria
12
Fusion Concepts
18
42 Magnetic Plasma Confinement
20
44 Tokamak Concept
22
762 Boundary Conditions
123
763 Choice of Time Step and Spatial Resolution
124
Power Coupling
127
82 Change of Surface Temperature
129
821 Heat Conduction in a HalfInfinite Medium
130
822 Pointlike Heat Load
131
83 Power Removal
132
84 Thermal Stress
133

45 Design of the First Wall
23
451 Limiter
25
452 Divertor
26
The PlasmaMaterial Interface
29
The Plasma State
31
51 Ionization Degree and Coupling Constant
32
52 Debye Length
34
53 Plasma Frequency
35
54 Collisions in Plasmas
36
55 Transport Processes in Plasmas
41
551 Transport by Binary Collisions
42
552 Neoclassical Diffusion
43
553 Anomalous Transport
44
56 The Vlasov Equation
45
57 The Poisson Equation
47
Particle Coupling
50
61 Binary Collisions
53
611 Scattering Angle α
55
612 Scattering in the Coulomb Field Ur Cr
57
614 Interaction Potential Ur
59
General Case
62
62 Particle Transport in Matter
65
621 Definitions and Main Parameters
66
622 Elastic Energy Loss
68
623 Inelastic Energy Loss
70
63 Material Modification by Ion Beams
74
64 Retention and Tritium Inventory Control
77
65 Impurity Generation
78
651 Physical Sputtering
79
652 Chemical Erosion
85
653 RadiationEnhanced Sublimation
87
654 Thermal Evaporation
88
655 Blistering
89
66 Charge Effects
90
67 DiffusionControlled Sputtering
91
68 Backscattering
93
681 OneCollision Model
95
682 The Diffusion Model
96
683 Approximations
97
69 Electron Emission
98
691 Secondary Electron Emission SEE
99
692 Thermionic Electron Emission
100
693 Electron Emission by the Application of an Electric Field
101
610 Modeling of ParticleSolid Interaction
102
6102 Monte Carlo Methods
103
Electrical Coupling
109
71 Electron Flux Density
110
72 Ion Flux Density
111
73 Bohm Criterion with the Sign
112
74 Space Charge Limited Currents
116
75 Effect of Magnetic Field Geometry
118
76 Modeling of the Electric Sheath
120
Impurity Problems in Fusion Experiments
135
911 Line Radiation
136
913 Cyclotron Radiation
138
915 Benefits of Radiation
139
92 Erosion Phenomena in Fusion Experiments
141
921 Plasma Disruption
142
922 Edge Localized Modes ELMs
143
923 Runaway Electrons
144
924 Erosion by Energetic Alpha Particles
145
925 Hot Spots or Carbon Blooming
146
926 Flake and Dust Production
147
928 Erosion by Arcing
148
929 NonLinear Erosion due to Impurities
149
93 Impurity Transport
154
931 Spatial Distributions of Neutrals
156
932 Atomic Processes in Impure Plasmas
161
933 Prompt Redeposition
163
934 SOL Screening Efficiency
166
935 Accumulation of HighZ Impurities
167
937 Sawteeth as Plasma Cleaner
168
938 Deposition of Impurities
169
939 Modeling of Erosion and Redeposition
172
94 Critical Impurity Concentration
176
Operation Limits and Criteria
179
The Problem of Plasma Density Control
180
101 LongTerm Operation
183
102 Wall Conditioning
185
Plasma Operation Limits
189
Material Operation Limits
195
121 Erosion Flux into the Plasma
197
123 Impurity Criterion
199
1241 Simple Geometrical Model of Redeposition
203
1242 Net Erosion at Divertor Plates
205
1243 Net Erosion at Wall Plates
208
125 Neutron Irradiation
209
Choice of Materials
212
131 Candidates of Materials
216
1311 Discussion of PlasmaFacing Materials
218
1312 Construction Materials
219
132 Alternative Concepts and Innovative Ideas
220
133 Open Questions
221
Summary and Outlook
225
Appendix A
231
A2 Simple Particle Mover
237
A3 Symbols
238
A4 Abbreviations
244
A5 Fundamental Physical Constants
247
A6 Physical Properties of Elements
248
References
252
Index
273
Ауторска права

Друга издања - Прикажи све

Чести термини и фразе

О аутору (2006)

Dirk Naujoks, born 1965, has studied at the Moscow Institute of Energy (1983-1989) and acquired his PhD from Lomonosov Moscow State University (1991). From 1991 he has worked at the Max-Planck-Institute of Plasmaphysics (IPP) at its different sites Garching and Berlin and takes now part in the Stellarator project W7-X of the IPP in Greifswald, Germany. In 1999 he stayed a half year at the Argonne National Laboratory as a guest scientist. From 2001 to 2005 he gave lectures at the Humboldt University of Berlin on Computer Simulation in Plasma Physics.

Библиографски подаци